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ABSTRACT
We calculate the asymptotics of combinatorial sums Y o f (@) (Z) E, where
a = (a,-..,op) with a; = a; for certain ¢, j. Here h is fixed and the a;’s

are natural numbers. This implies the asymptotics of the corresponding
Sp-character degrees Y, f(/\)d[;. For certain sequences of S, characters
which involve Young’s rule, the latter asymptotics were obtained earlier
[1] by a different method. Equating the two asymptotics, we obtain equa-
tions between multi-integrals which involve Gaussian measures. Special
cases here give certain extensions of the Mehta integral [5], [6].
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Introduction
The present work extends the asymptotics obtained in {3] and derives applications
for the evaluation of certain multi-integrals with Gaussian measure. In particular,
extensions of certain special cases of the Mehta integral are derived here.

The Mehta integral, [5], [6], which is a consequence of the celebrated Selberg
integral [4], [5], [6], [9], states that
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Here I' is the Gamma function.

Let Qf = {(z1,..-,2) € R z;4---+zr =0and z; > --- > x}. In section 4
of [7] we saw how to change the domain of integration in the Mehta integral from
Q) to R*; the domain is already R* in the form of the integral just stated. Thus,
Theorem 3.3 below, which relates the Mehta integral I' to the multi-integral I
there, extends a special case of the Mehta integral. Note that Theorem 3.3 is a
special case of Theorem 3.2 here, which also relates two such multi-integrals.

The evaluations and the equations between these multi-integrals are by-
products of the study of the asymptotics of the degrees of certain S,-character
sequences, which we now describe.

Also in [3] we obtained the asymptotics of

> s(2)

GGAh(n)

as n — oo and A fixed. Here
An(n) ={(o1,...,00)|0< 0 €Z and »_a; =n}.

In [3] we gave several applications to the evaluation of certain multi-integrals.
Similar sums, but with @ = (a,..., o) having a; = a; for certain %, j, arise
naturally. In the present paper we consider the asymptotics of such sums and
give some applications.
More specifically, let 1,...,r, be positive integers with 7y +--- 4+ 7, = h, let
ro = 0 and

9i={T1+"'+7‘i_1+1,...,’I‘1+"-+T7;}, SO{l,...,h}Z Uel

i=1
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Denote s ~ t if s,t € 0; for some 7, and
Bs(n) = {a € Ap(n)| as = ay if s ~ t}.

Theorem 1.2 gives the asymptotics of the sums

> f(a)<z>ﬁ (n — 0o, 0 fixed).

ac By (n)

Here we restrict ouselves to functions f(a) which are products of terms of the form
(o — aj + d;j) and (a; + d;), where d;; and d; are constants, and 7,5 = 1,..., k.
Note that in [3] we considered a more general class of functions f(e), but the
functions considered in the present paper suffice for the applications. Moreover,
restricting ourselves to these functions considerably simplifies the discussion of
[3], namely, it allows one to avoid introducing permissible functions in the sense
of [3].

Let now Par(n) denote the partitions of n and Ag(n) = Bg(n) NPar(n). As an
application we obtain, in Theorem 2.1 below, the asymptotics of

> T
A€Ag(n)
(where dy equals the number of standard Young tableaux of shape A).

This is applied to study the asymptotics of deg(y%(n9),), an object we now
describe.

Let S, denote the nth symmetric group, and for each n let 9, be an S,-
character. Sequences ¥ = {1 }n>0 arise naturally in Representation Theory.
A useful tool for studying such sequences is the notion of “Young derived se-
quences”, introduced in [8]: For each A € Par(n}, x, is the corresponding irre-
ducible S,-character (so X(n) is the trivial S,-character). Given ¥ = {¢n}n>0
as above, its “Young derived sequence” y(¢) is defined via y,(¢) = (y(¥))n. =

i:o 1/}j®x(n_ ;)» Where ® is the “outer” product of characters. Also, y*(¢) is the
th derived such sequence. For example, let ¥y = 1, ¥, =0 if n > 1. Also let
dim V =/ and let <p$f ) denote the Sp-character given by the classical action of
S, on V& Then (y4()), = ¢ (Example 1.4 of [8)).
Let
n={m}, M= Z b(A)xx

AEAL(n)
(Ax(n) are the partitions of n with at most k parts) and denote

={n}, 1= > bNxa,
A€Ar(n)
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where
A= (A1, A2,...) and AT =(A1,..., A1, A2, .., A0, ).
|\
q g

The sequences y*(n?) are studied in [1] and [2]. The asymptotics of deg(y*(n9))n
are given by [1] Theorem 3.3, while the relations between the coefficients in 5
and in y¢(n9), 1<¢£<g—1, are given by Theorem 1.2 of [2] (which generalizes
Example 1.4 of [8]).

Theorem 2.1 below together with Theorem 1.2 of [2] allow us to compute the
asymptotics of deg(y?(n?)), (n — o0) in a way which is independent of [1,
Theorem 3.3). These two computations lead to deg(y*(n9))n ~ ciIn*(gk + £)"
[2, Theorem 4.1] and deg(y%(n9))n ~ coI2n*(gk + £)™ (Proposition 3.1 below).
Here u is a certain number, ¢;, ¢ are explicit constants, and I;, I are multi-
integrals involving Vandermonde-like polynomials and Gaussian measures.

Equating the two asymptotics we deduce identities of the form

I = (ca/c1)l2  (see Theorem 4.3 below).

Note that the results of [3] sufficed for that second asymptotic computation with
the resulting integral identity only for the case £ = g — 1 {2, Theorems 4.3, 4.4].
However, Theorem 2.1 below allows us to deduce corresponding calculations and
multi-integral identities for all 1 < £ < g — 1 (Theorems 3.2, 3.3 below).

Certain choices of f(\) give I1 as the Mehta integral (Theorem 3.3 here), thus
enabling the evaluation of I, which to our knowledge is a new result, and a
variant of (a special case of) the Mehta—Selberg integral.

In §4 we prove that certain homogeneous polynomials of the differences z; — z;
do satisfy a property (“niceness” in the sense of [8]) which then allows us to obtain
both corresponding asymptotics of deg(y*(n?)), also when g < £. Hence, in The-
orem 4.3 below, we are able to deduce further equations between corresponding
multi-integrals which involve Gaussian measures.

As mentioned above, the S,-characters (y¢(n?)), generalize the classical S,-
character (y%(1))n of [8, Expl. 1.4]. The multiplicity of x in (y*(¥))n is se(N),
the number of /-semi-standard tableaux of shape A. Theorem 1.2 of [2] gives
the multiplicities (8 (1) of x, in (¥*(n9))n, but only when £ < ¢ — 1. When
g — 1< ¢, Theorem 4.5 below gives an approximation of 5()(u) by a polynomial
a®=#+ (), where al*)(z) is obtained from an explicit polynomial a(®(z) by
“partition”-integrating a(®(x) s times.

ACKNOWLEDGEMENT: We would like to thank G. Schechtman for some very
useful discussions we had with him while working on this project.
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1. Asymptotics for multinomial sums

In this section we calculate the asymptotics as n — 00, of 37 cp, () f(@) (Z)ﬁ,
when f is essentially a monomial in the a; — a;’s and in the ay’s and By(n)
are the (a1,...,a,)'s, a1+ -+ + as = n, with some “6” identifications. This is
Theorem 1.2 below, which “§” generalizes {3, Thm. 1j for such f’s. In comparison
to [7] and to [3], the restriction to such f’s considerably simplifies the calculations
while all the applications known to us so far involve only such f’s. It is quite
clear that with some more work, Theorem 1.2 can be proved for a much wider
class of functions f.
We define the following:

Notations 1.1: N ={0,1,2,...},
Ap(n)={a=(a1,...,a)|V o; € Nand a; +--- + oy, = n}.
Letry,...,7, € N—= {0}, m1+---+rp=h, 7o =0, and
Oi={ri+ - +ria+1L...,m+-+r},
so that {1,...,h} =J}_, 6;. Denote
By(n) = {a € Ap(n)| as = oy if 31 < i < p with s,t € 6;}.
Define sat if there exists 1 < ¢ < p with s,t € 8;; otherwise sgt. Thus
By(n) ={a € An(n)| as = o if sat}.

In the sequel we denote 5 by ~ and fg by »~. Let as,ass € N, 1 < s,t < h, and
fix

f(g) = H ﬁ(as — Qg + dstv) I:H H (a2 + dt Ew] ’

1<s,t<h v=1 t=1v=1

where the d;;’s and the d,’s are constants and &, € {0, £1}. Clearly, if @ € By(n)
then f(a) =d- fo(a), where d = [],., [15; dstv and

[H [+ 6]

t=1 v=1

Ast

fO(a H H -+ dstv

gt v=1

Denote Y o, €4, = b. Finally, recall that w, =2z, if lim, oo (wn/2,) = 1.
We can now state
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THEOREM 1.2: Recall that h is the length of a, and that the a;’s and the ag’s
determine the factors of the monomial f(a). Asn — oo,

> @) et

acBg(n)
where
h
_ ph 1 B8
——?4‘— Z a3t+Zbg+—(p—1)+§,
1<swt<h t=1
1 B(h~-1) é st
c= (—_57;) h,_u+ H H dstv:
1<s~t<h v=1
and

P
I= foo f H (i — ;)% - exp <—§ an?) dP Vg,
i=1

r1E 4+ rprp=0 1<i#j<p

Here

€i; = E QAgt.

s€0;,ted;

Proof: The proof consists of the following four steps:
STeEP 1: Write f(a) = d- fo(a) as above, fo(a) = P; - P2, where

Gst

P1= H H(as_at+dstv) and Pz_H H at+dt Ew‘

1<swt<h v=1

Expand Pi: Py =[]}« 0icn(@s —az)®t + P, where Py involves the other terms
of P;; those are clearfy of lower degree in the a; — a;’s. Finally, write fy(a) =
fi(a) + fa(a), where fi(a) = [];conicn(@s — ) - P and fa(@) = P - P,
‘We shall prove Theorem 1.2 with fl_(a) replacing fo(a). In that proof, notice
how each term ¢; — oy in fi(@) contributes a /n to the asymptotics. Hence,
expanding fs(a) and computing the corresponding asymptotics, one obtains the
same exponential growth h8™, but a smaller power of n, namely n* , where u’ £ u.

It follows that
> s o ¥ ()

acBy(n) nheo acBg(n)



Vol. 112, 1999 IDENTITIES BETWEEN MULTI-INTEGRALS 307

STEP 2: Let @ € Ax(n) and define c(a) = (ci1(a),...,ch(@)) via oy = n/h +
ci(a)/n. Given 0 < p € R, denote

Bo(n,p) = {a € Bo(n) |lc(@)| < p, t=1,...,R}.

For fixed p and for n large, oy ~ n/h, t = 1,...,h, so a; is large, hence
Stirling’s formula applies to a;!. Moreover, for such e,

A~ T (ele)-ala)s| v o= ()7

1<swt<h h

SteP 3: Fix p > 0, let n be large and e € By(n, p), and approximate

(&) =

by Stirling’s formula as follows:
(=& =
a)  \Vor 1 a3
t

a_z ¢ h
t_h \/ﬁ ’

h 1 h/2
L G (5

t

S0
) Eteevmtg

Clearly, the 1 on the right can be discarded. Thus
h—1 ht
(") o (_L) <l> T pnenz L
o V2T n Q ’

h R+eey/m
o= II (1+£_ﬁ)" ,
t=1 Vvn

where

Let In = log,; then

@ =3 (% +cv/n) In <1+ f\;ﬁ) .

t

Expand In(1+z) =z —22/2+23/3 — +--- (if |z| < 1).
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Multiplying and summing over ¢ (note that ¢y + - - - + ¢n, = 0) we deduce that

In(Q) = H(} + - )+ 0(72),

hence
~ e~ 3 (el teh)

O~

and we conclude:

Conclusion: Let a € By(n, p), n = oo; then

n 1 \*! T,
1.2.1 ~ [ — CRR2 L= cem Bl teR)  pn
w2 ()= )

Hence, by Step 2,

n B
(122) f1 (a) (a) ~A;-Ap-n¥ hﬁ"
where - .
_ 1 -1 & _ Z_: by
m=(gm)  0E"
Ay = Ag(c) = H (cs — €)% - exp ( - %ﬁ(cl(a)z +-+ Ch(a)z)),
1<swt<h

and
w = —g Z ast + Z b;.
1<soat<h

The dependence of the right hand side on a appears only in Az = Ayql + Aexp,
where

h
Apol = H (€s—c)* and  Aexp =exp (_%(Ci +eee Ci)) '

Notice that Aol is polynomial in the ¢;’s, while Aexp, has rapid Gaussian decay
in the ¢;’s. Thus, by a standard argument (like the classical proof of the Central
Limit Theorem of Probability), it follows that

lim [llm M} =1,

p—oo |n—oo Sum(n, p)

where

sy =3 p@(7) wa smenn=_r se(?)

a€Bg(n a€Bg(n,p)
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i.e. the asymptotics of Sum(n) can be calculated by taking lim, o in the
asymptotics of Sum(n, p). This we do next.

STEP 4: In the notation of Step 3 it clearly follows that
Sum(n,p) ~ Ay -n* - hP" .o
Cy — Ct(a) and
o= ¥ a5 5
t 2 t=1 tle
ac Bg(n,p) 1<s»t<h

Denote §; = §;(@) = ¢rybqry_141 = = Crybrgry, 1 <0< pand
n 14
Ay(n,p) = (51,...,5,,){ all {3i] < p and 3 +4; -/ € N and _eriéi:o .
7 =

Notice that @ — é6(a) = (01(),...,dx(a)) is a bijection from Bs(n,p) onto
Ag(n,p). Also, S0 2 = 3P 702 and

H (cs — €)%t = H (6; — 8;)%7, where €;; = E Q.
1<swt<h 1<i#j<p s€6;,t€0;

Thus

€eqq ,Bh i 2
o= Z H (0; — 6;)%7 - exp —~2—Zri6i .

8€AL(n,p) 1<i<ji<p =1

Since 3_%_, ;6; = 0, the above sum in the exponential is a (p—1) fold summation.

Approximating ¢ by an integral expression (see, for example, [7, p. 127]) we

obtain ¢ ~ \/n?"" - I'(p), where

I'(p) = Jf H (s — x;)° exp (wﬂz_h ZT’“?) d®-D

T+t e =0 j<iti<y i=1
[z1)-slzpl<p

Conclusions: In the previous notations
Sum(n, p) = A, - I(p) - n®+%= . BB™.

Taking lim,_,, we obtain Sum(n) ~ 4, -I’- nwti . hP™ where

I'=  fu.g H (@; —x;)% exp <———Z'r’2 > A

r1T1++7pTp=0 1<i#j<p
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Finally, make a change of variables u; = v/h z; in I'. Clearly, I’ is transformed
into I, while the factor

(L Zez‘j+P—1 3 h_%zswt ast—%(P"l)
\/}_?' =

now multiplies the previous constant

B(h-1) h_oSh Qs
A.d:(_\/ézﬂ) -hgf PN -d, d:H Hdm' .

s~t y=1

2. Transition to d)

Let 6, Bp(n) and f(a) be as in 1.1; define
Ag(n) = Bg(n) NPar(n) = {& € By(n) ‘ a; > az > > ot

and consider the asymptotics of

) (Z)ﬁ.

acAy(n)

The previous calculations lead essentially to the same result, the only difference
being that the domain of integration now has the extra condition z; > --- > z,,
Thus

THEOREM 2.1: Let By(n) and f(a) be as in 1.1 and Ag(n) = By(n) N Par(n).

Then Y e p,ny f(@)(5)” = ¢+ Th-n* - hP", where c and u are given in Theorem

1.2 and where

L= fof I[I @i-z)®-exp (—g zp: Tz—éﬂ?) d®~ Vg,

1%+ +rpTy,=0 1<i#i<p

z1>--2Tp
Recall et
A T— z at C:(L>ﬂ(—).h_u+§.d
“ 3€6;,t€6; o Var ’
Qst
> h 1 ﬂ
d=HHdstv, U=——%+§ Z ast+th+ _2'
s~t y=1 1<swt<h

Next, we calculate the asymptotics of 3,4, o (/\)d/\, where d) denotes the
number of standard Young tableaux of shape A.
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THEOREM 2.2: Let ag,a: € N and let

Ast h a
=1 11 H(As—Aterm)] ~ [H H(At+dw)},

1<s<t<h v=1

with dst, and dy, constants and Ag(n) as above. Then

262'2'”2' R
FNdE I -n¥z - "

AEAp(n)
where
Bh* 1 B o 1 g
qu————i- Z ast—i—Zat ZZ §(p~1)+§,
1<s<t<th =1
st
< 1 )5(h—1) +B H ﬁ ﬁ
c=|—-— chTwtE L d = (t—s) sty
v 2m 1<s<t<h v=1
sr~t
and

I, = oo H (z; — _Tj)eu+ﬁn'7‘j - exp <_§

ret o+ rpTp=0 1 <icg
12> 2P J=P

r,xf) dPVg
i=1

(again, e;; =3 o, €D, st )-
Proof: By the Young Frobenius formula,

dy = (n) [hcsctcn Qs — M +1—3s)
Ao TS T Qe+ )

hence f(A\)d? = g()) (K)ﬂ, where

h—1 h—s
gV =fN- JT Qe=re+t=97-T[ [TO+07" =M My,
1<s<t<h s=1 t=1
with a
Ml = H [()\s—)\t'f-t—S)ﬁ' H()\s —)\t+dstv)]
1<s<t<h v=1
and

- h
H ,\ +8) T TTOs + dev)-

u:j|
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Rearranging terms, we can write

’

Qg
M= ] JJOs—M+dy) and M= H H As +dl,)E .
1<s<t<h v=1 s=1 v=1
Here ¢}, = a5 + 3,
dstvv 1<v<ag,
d;tvv {
t—s, agt+1<v<ay+p,

bs =3 0l €50 = G5, a = a5+ f{h —s) and b, = Zzi;l Esv = a5 — PB(h — s).
Applying Theorem 2.1 we have

B
S o= ¥ o)) e

A€Ag(n) A€Ag(n) neo
where N
Bh 1 B
=5ty Z a;z+zb;+* bR
1<s<t<h t=1
sttt
B(h—1)
1
= (F) s,
Qst
d’ = H H dst'u = H I:(t — S)ﬁ H d_gtv}
1<s<t<h =1 1<s<t<h =1
and

I = [ [ H (z; — z]) - exp <_§ erc ) d®-Vg,

mz+ =0 << i=1
12> 2Tp J=P

Here ez] Zsé9,,t€9]- ast'
Simplify ug first: al, = a5 + 3, and

21=Z1—Z= h—1)

1Ss<t<h 1<s<t<h 1Se<t<h
8%t - - gt

Tz

s
“M“
I

N =

sinceZl = i Z 1|, hence

<t i=1 s.t€0;
3t 3<t
P
, 1Y B
2. %= D awtyh(i-1)- 2l
1<s<t<h 1<s<t<h =1

savt st
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Also, b, = a; — B(h — t), hence

Note also that > 0, ri(r; — 1) = >_%_, r? — h. Thus

pr* 1 B\ 1 8
'U/2:_—4"+§ Z ast+2at—ZZr?+§(p—l)+—2—.

Finally,

€= X ag= 3 (as+ )= eyt Priry,
s€8;,t€0; s€8;,t€0;

since e;; = Zseoi,teej Qgt-
Note that u in Theorem 2.2 can also be written as

h

1 1 1
w=—3fR =Dtz D (axtH+) atp-1)
1<s<t<h s=1
3. Degrees of Young derived sequences
Let 7 = {ni},>0 denote the S,-character sequence obtained from an

Sn-character 7 = {9, }n>0 by a g-column dilation of the Young diagrams, and
let ¥'(n?) = {y'(n?)n}n>0 denote its Ith Young derived sequence as defined in [8]
(see also the Introduction). In [2] a formula, valid for ¢ > 1 and 0 <1 < ¢—1, was
given expressing the coefficients of the irreducible characters in 3'(n?) in terms
of those in 7 and of semi-standard Young tableaux.

If the Young diagrams of 7 are of height &, then the Young diagrams of 4(n9)
are of height gk + 1. Let a;5,1 <1 < j < k be integers and let F' = F(x) be the
function on R* given by

F(.’E):F(l‘l,...,l‘k)z H (xi—mj)‘“j.
1<i<j<k
Let
M= Y. F)xr (Ak(n)={)€Par(n)| \ey1 =0}),
AEAL(n)
where x is the irreducible S,,-character associated to A. By [2, Theorem 1.2}, if
0<!1<¢g—1then

ya= D b (w)xu

pEAg(n)
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where 6 is determined, as in previous sections, by specifying integers r1,...,7,
summing to gk + {. Here p =kl 4+ k + 1 and

1, i=ml+D)+1,....mI+1)+1; m=0,...,k,

r; =

qg—1 i=mi{l+1); m=1,... k.

The formula for 5 (1) = b (1, ..., peryt) is given by
k

B (1) = Fug, ..., prg) {112+ (1=1)} ¢+ TT I (s — e+t —5).

m=0 mg+1<s<t<mg+!

The function 5% (1) is of the type that can be handled using Theorem 2.2 of the
present paper. In particular, we shall show the following

PRrRoOPOSITION 3.1: With the above notation we have

deg y'(1")n = C-1-n" - (gk +1)77"2

where
1 |\ (qgk+i-1) k —(k+1
C=(— 12 (g — 1= {12! (1 = 1)1~
1
Z ai; — —kg*(k+1) + 5k
1<z<]<k
and
1 _
I= // V(@ Trirrsr) exp (— EHmHi,,,q) dklAk+=1)
Rk,1,q
with
m(l+1)+l k
Ripq = {212 = Thith+t | Z Y @A@Y Tmasn) =0},
m=0 i=m(i+1)+1 m=1
k
Vie) =] II (z; — z;)
m=0 [m(l+1)+1<i<j<m(I+1)+1}
x 1 @en—zep)™ I @—z)m
1<i<j<k 1<e<y <kl+k+l
and

m(l4+1)+1

k
g = Z Z zZ+(q—1) Z )
m=1

m=0 i=m(l+1)+1
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Before proving Proposition 3.1, we give the application to identities between
multi-integrals. In [2] the asymptotics of deg u'(n?),, was computed in another
way from deg 7, and general results about Young derived sequences. This also
leads to a multi-integral expression, but of a different form to that of Proposition
3.1. Equating the two asymptotics leads to an identity between multi-integrals.
This was carried out for the case ¢ = [ — 1 in [2, Theorem 4]. We obtain the
following generalization of that result.

THEOREM 3.2: With the above notation and letting Dy, = Dy(x) be the function
on R* given by

1<i<j<k

let I' be the multi-integral expression

k
= [.. * exp(— 2 (k—1)
—/ /Sk F(x)(Dr(z))? exp( 5 z:: )d z

where .
Skz{mlz---zxklzmizo}-
i=1

Let I be the multi-integral expression of Proposition 3.1, so that

1 _
]:/.../ Vi(zy, ..., Thivkst) exp(_ 5“37”%,1,(;) dkltk+=1) o
R l.q
Then we have
=CI

where
o' =(=) (&) varziae gyt

xﬂ&%~@—l—UQ{ﬂ%~(q—DG*.
Notice that the constant C’ in the above theorem does not depend on the
function F'.

If we substitute F(z) = D (z)?P in Theorem 3.2, we obtain

THEOREM 3.3: In the notation of Theorem 3.2, let F(x) = Dy(z)?. Then
=C'I,

where
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C’ and I are as in Theorem 3.2, and here

k
=11 II (zi — z5)

m=0 {m(l+1)+1<i<j<m(l+1)+l}

X H (Tie1) — Zi04m)” H (@ — ;)™

1<i<j<k 1<i<j<kl+h+l

with the r; as before.

NoTE: I’ in Theorem 3.3 is a Mehta integral, hence it can be evaluated, which
then implies the evaluation of the multi-integral 1.
We proceed now to prove Proposition 3.1 and Theorem 3.2.

Proof of Proposition 3.1: 'We apply [2, Theorem 1.2}, Theorem 2.2 and “deg” to
{112t (1 = 1)1yt = Y fl
neAg(n)

where, of course,

k
F1) = Flugs - ikq) [] II (s — piz + 1 — 8).

m=0 {mg+1<s<t<mg+l}

We are dealing with partitions of height h = ¢k + [ and in order to apply
Theorem 2.2 we rewrite f(u) in the form

Fy= ] (e —pe+ds)™
1<s<t<gk+l
and calculate the b,;; and dg;. Then Theorem 2.2 (with § = 1) gives a result of
the form

{12t (= )Y deg Y (1)n 5 o Ton* - (gh+ )" TUFE
n—oo

We have to show that this agrees with the formula of the proposition. The
constant ¢ is given by

o= (712=)( U4 e

s~ t an~t

Here 1 < s <t <p=(kl+k+1) and s ~ t is the equivalence relation with
respect to the 8 of the proposition, namely that determined by the integers

1, i=m{+D+1,....mI+1)+];, m=0,...,k,

q-—1, i=m{l+1); m=1,...,k
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We have
1 ) 1 1
= —— -1+ = bt + 1) + =(kl —
u 2((qlc+l) HQSEM( t+ )+2( +k+1-1)
T‘i]' 1 2 2 d(p—l)
; ; — Zj) exp(—i(rlxl + ot Tpzy)) z

1<1<J <p

where, for 1 <i < j <p,

T'” = Z Z(bst =+ 1)

s€EB; 1661‘
The region R in RP~! is
R={z1> 2>xp| "z + -+ 7152, =0}

Now by the definition of F and the formula for f ( ) we have

H (s —pua+ds) > = H (Hig—prjq) ™ H H (s—pe+t—s).

<ici< +1<
1<s<t<qk+l 1<i<j<k T gt

Comparing both sides we have
{aij) S:Zq)t:3q71SZ<]Ska
bet =

1, mg+l<s<t<mg+l;, m=0,...,k
Hence
it i=¢(l+1),j=75(0+1); 1< <j <k,
DD be=
s€8; ted; 1, m(il+1)+1<i<ji<m(l+1)+1; m=0,...,k,
so that
k
I[[ @-=)a=1] 11 (z: — z;)
1<i<j<p m=0 {m(l+1)+1<i<j<m(l+1)+i}
x ] @igery - zigen)™ I @—=z)m.
1<i<j<k 1<i<i<ki+k+E

This is the function V(z) of the proposition. We now turn to the computation
of u. By inspection of the formula for by, we have

stt: Z aij-l-i Z 1

sbt 1<i<j<k m=0 {mq+1<s<t<mg+l}

= Y eyt gk iE- ).

1<i<j<k
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Viewing the s,t with s o0 ¢t as the complement of the s,t with s ~ ¢ gives

sz;tlz%(qk+l)(qk+l—1)~%k(q—l)(q—l—1).

These formulae sum to give

Z(bst + 1)

sbt
and on substituting into « and simplifying we have finally

1 1 1
== Y a;—ck*k+ 1)+ 5
u a’] 4q(+)+2k7

1<i<j<k
which is the expression of the proposition.
Looking now at the expression for the constant ¢, we observe that

[Tdw =1

s~

and

H(t - S) = {1'2‘ . (q —1- 1)|}k,

s~t

so that we obtain the expression of the proposition for C since
C= {112 (1 - 1}~ k+D¢

To complete the proof, we observe that R = MRy, and that the integral I we
have derived agrees with the integral I of the statement of the proposition. |

The proof of Theorem 3.2 will follow easily once we remark that by the change

of variables )

VEk
and by some routine simplifications, the result of [2, Theorem 4.1] (with a cor-
rection: the vk in ¢ of [2, Thm. 4.1] should have been V@), which gives the
alternate computation of deg y'(n?),, may be restated as follows.

;> Ti, 1,=1,]C

ProOPOSITION 3.4 (2, Thm. 4.1): With the above notation we have

deg ¥ {(n%)n = d-I'-n* (gk+1)" "

=00

where 1 1 1
_ o T2 -
u=g Z asj 4k:q (k+1)+2k,
1<i<j<k
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d = (\/—%)Qk_l\/%{ﬂ?! (g — 1)

and I’ is the multi-integral expression of Theorem 3.2.

Proof of Theorem 3.2: Equating the asymptotics of deg 3'(n%), given on the
one hand in Proposition 3.1 and on the other in Proposition 3.4, we have

C-I-n* (gh+D)" "3 =¢ T n* (gk+])" "
so that

C'=C- () -Vgk +1,

which on simplifying gives

C’:(m) ( ) Vak + {12! 1)1}~ +D
x {1121 (g—1-1)1} {1!2!---(q—1!}_k

as required. ]

4. “Nice” polynomials

Theorem 3.7 of [8] was proved for functions satisfying a “niceness” property. Here
we show that the “p.h.d.” polynomials defined below do satisfy that property,
hence that “Theorem 3.7” applies.

Definition 4.1: 'The polynomial a(z1,...,z,) is called p.h.d. if it satisfies the
following three properties:
(p) If Ay > -+ > Ay then a(Aq,...,As) > 0 (positive),
(h) a(z) is homogeneous (homogeneous),
(d) a(z) is a polynomial of the differences z; — z;’s:  a(z1 +s,...,24 +5) =
a(z1,...,zn) for all s (differences).

Definition 4.2: Partition summation and partition integration:
For pu = (p1,...,un) € R* and a = a(zy,...,z,) a function on R?, define

123} Bh
P iy a)=/ dwl---/ dzp - a(z1,...,2h).
w “

2 h+1

Assume further that u is a partition; then define

— Z Z a()\l,---,/\h)-

A1=p2 An=pht1
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The discussion in 4.6-4.10 below shows that in the sense of (8, 3.6] p.h.d.
polynomials are “nice”: p - i(u,a) approximates p - s(u,a). Hence we can apply
Theorem 3.7 of [8] and essentially restate that theorem as:

THEOREM 4.3 (8, Thm. 3.7): Let

h
VGIi(a) £ [ [ a2 [T (@i—=;)-exp (_gzxz2> dh=1 4
=1

z1+ o Hzp=0 i<i<j<h
Ty >y = -

(V for Vandermonde, G for Gaussian measure, I for integration).
Let a polynomial a = a{z1,---,zp) be p.h.d. of degree d, and

z=(21,...,2n41) € RAFL
Let
p=p(21,...,2n41) = p-i(2; a).
Then
VGlhyi(p) = c(h) - VGIn(a)},

where 1 (d+h—(3)h(R-1))

0=(537) =

h+1 h+1
More generally, given a = a(z) = a(z1,...,2Zn), define the sequence of

polynomials a'® in s + h variables by induction:
a® = a(o)(zl, ooy zp) =alz1,...,zh)

and
altt) = a(8+1)(zla“~1zh+s+1) =p-i((21,. -y Zntst1); a(s))-
If a(z) is p.h.d. then
s-—-1

VGIhs(@®) = | [T c(h+) | - VGIn(a),
Jj=0

le.

a(S)(xla"'amh+s)' H (.’Ei—-’le)

Tt Tppa=0 1<i<j<h+s
212 2Thy,

h+s

- exp (‘h ; ° ZCB?) dihts—D g =

i=1
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s—1

Hc(h+j) e a(z1,...,2h)
=0 S
z1 > Dy
B
[T @i—=j)-exp (—5 me) dh g,
1<i<j<h =1

Remark 4.4: The discussion in 4.6-4.10 also yields an approximation solution
to the following problem:

Let T = Z/\EAk(n) F()\)X,\ and write

W= > D (wxp

€M grte(n)

The multiplicities 5% (1) were calculated only for 0 < £ < ¢ — 1 ([2], Thm.
1.2). The problem of calculating the b(*)’s for ¢ < £ is open. However, we shall
prove

THEOREM 4.5: Let F(z) =[], <; o<k (®: — 2;)%7 with b®) () as in 4.4.
Define

©) () = 5
a{(z) = Fzg, Tag, -, Thg) - | 11

(zi — ff?j))
t=0 tq+1<i<j<tq+q—1
(120 (g = 2R

then construct {a(®}>¢ inductively as in 4.3:
al*tV(2) = p-i(z; o).

Then:
(4.5.1) If ¢ < £ then b9 () is a polynomial of the p; — Hi's,
(4.5.2) a'®)(z) is p.h.d. for all s > 0, and
(4.5.3) 8 () = a=9+D (u)+ lower terms in the y; — ju;’s.
Thus, b¥) is approximated by a'*~9*%)  (in our earlier notation, QIMES
at= et ().

To establish “niceness”, we proceed as follows:
LEMMA 4.6: Let a = a(z1,...,2r) be p.h.d. of degree d, and let p(z) =
p(21,...,2n+1) = p-i(2z,a). Then p(z) is again p.h.d. and of degree d + h.

Proof: By Lemma 3.4 of (8] we only need to check positivity (p):
Let py1 > --- > ppy1 and show that p-i(y, a(z)) = p(p1, .., pra1) > 0.
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Indeed, let € > 0 satisfy p; —& > p;41 +€,e=1,...,h If
Ni—52)\iZMi+1+5, i:]')"”h"

then Ay > -+ > Ap, 80 a(M,...,Az) > 0. By the (multi-variables) mean-value
theorem, it now follows that for some (Aq,..., ) with

Hi—e> XN > uiy1+te, i=1,...,h,

we have

H1—€ Hi—€
P(Ml,---,ﬂhﬂ)Z/ dl‘l"'/ dzp, - a(z1,...,Th)
m

Hate ht1te
h
= (H(Nn’ = Mit1 — 25)) “a(Ar, .o AR) >0 B

i=1
Remark 4.7: Letb; <d; € N,i¢=1,...,handlet f(z1,...,z,) be a polynomial
of degree d.

Let
d] dh
pl(b,d)=p1(b1,...,bh,d1,...,dh): d(L‘]/ dmh-f(ml,...,:vh)
by bi

and

dy dn
p2(b,d) = pa(br,. ., bn,da,. o ydn) = Y oo Y flin,e i),
i=by  in=bp
Then both p;(b,d) and ps(b,d) are polynomials in by,...,bg,d1,...,dy, of
total degree d + h. Moreover, it is well known that pe(b,d) = pi(b,d) + r(b,d),
where r(by,...,bn,d1,...,dy) is a polynomial of total degree < d + h — 1 in
by,...,br,dy,...,dp.

COROLLARY 4.8: Let f = f(z1,...,25) be a polynomial of degree d and let
Ui > -+ > pipe1 (i Is a partition). Then (see 4.2)

p-s{p; fY=p-i(p; f)+7(u),

where both sides are polynomials in pi,. .., pnr+1 of degree d + h, but #(u) is of
degree < d+h — 1.
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LEMMA 4.9: Let f = f(z1,...,zx) and p = (u1,...,4ny1) be as in 4.8, and
assume further that f is a polynomial of the x; — x;’s; then this is also true of

7(u) and p - s(u; f).

Proof: By Lemma 3.4 of [8], p-i(y; f) is a polynomial of the z; — z;’s, hence
it suffices to check that for any s € Z,

p-s{(p + 5, par1 +8); ) =ps((p1, - -5 tnga); )

This follows, since

p1ts Hhts

Z Z FOL A [(i=mits)

Ar=pats Ak=phr+1t+s

#1 Hh
Z Z f(711+5a-~777h+3)

Mm=f2  Nh=phtl

Yoo > fln,..m) =p-s(uf). W

m=p2 Mh=HKh+1

I

s((p1 + 8, .-, prt1 + 8); f)

i

I

Remark: Let a(zy,...,z5) be p.h.d. of degree d; then

p-i(ps f) =pp1,. . Lhy1)

is p.h.d. of degree d + h. Assume now that u F n and denote

n .
Mi:h_ﬂ+ci\/ﬁ’ ci=c(p), i=1,...,h+1

Then (4 = ps — 557)

d+h
(i1, .- -5 fihy1) :p(Clx/ﬁ,‘--,ChH\/ﬁ) =Vn " plcr, .-y Chy)-

Moreover, if gy > -+ > pp4q then ¢g > -+ > cpq1, hence pley, ..., cpp1) > 0.

In Proposition 4.10 we have summarized the above discussion; it implies that
p.h.d. polynomials are “nice”, and this implies our Theorem 4.3.

PROPOSITION 4.10: Let a = a(z1,...,2x) be a p.h.d. polynomial of degree d,
let = (p1,...,ury1) be a partition, and denote

b(p)=p-s(u; a Z Z a(A1, .-, k),

A1=p2 Ak=pk+1
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M1 123
P(N):Pl(u, a): dml/ diEk‘G(J?l,...,l‘k).

He Hk+1
Write b(p) = p(p) + #{u). Then all three terms are polynomials of the differences
wi — iy, b(p) and p(p) are of degree d + k while the degree of 7(u) is at most
d+k —1. We have p{u) = \/ﬁd+kp(c)(c = c(p)), and if g1 > -~ > pg41 then
p(c) > 0. Also, p(z) is p.h.d.

NoTe: Expanding #(u) as a sum of its homogeneous terms, we similarly have

d+r—1 )
F(l"') = Z \/ﬁjfj(clw"ack'i'l)'
=0

It clearly follows now that, in the notation of [8, 3.5], such an a(z) is “nice”,
hence Theorem 3.7 of [8] applies to yield Theorem 4.3 of the present paper.
Alternatively, it clearly follows from the above that

Y bwd, Y e

pE€Ags1(n) n300 pu€Axir(n)

The asymptotics of both sides are done in [8] (follow the proof of Theorem 3.7
there), which leads to Theorem 4.3 here.
Before proving Theorem 4.5, note that 4.6-4.10 clearly imply

COROLLARY 4.11: Let a(zi,...,xp), b(21,...,2) be two polynomials of the
x; — z;’s such that a(z) is p.h.d. and b(z) = a(z)+ lower terms in the z; — z;’s.
Then p- s(z;b) is a polynomial of the z; — z;’s, and p- s(u; b) = p-i{u; a)+ lower
terms in the p; — p;’s (i.e. p-s(p,b) = p-i(y;a)).

The proof of Theorem 4.5: By [2], Theorem 1.2,

k
BITD() = F(Ag, Aag- - deg) - | [ 1I = Aj+j—1i)

t=0t¢+1<i<j<tg+q—1

(121 (g =2 TR

hence b9~ () is a polynomial of the A; — A;’s and b4~ (X)) = a(®(\)+ lower
terms in the A; — A;’s. Also, a® (z} is p.h.d., hence 4.5 holds for £ = ¢~ 1, while
4.6 implies (4.5.2) for all s.

Proceed by induction on ¢ — 1 < £.

By definition of “p.s” and by Theorem 1.3 of [8], 5(*V) (1) = p-s(; b)), hence
(4.5.1) follows by induction from 4.9.
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Finally, (4.5.3) easily follows by induction from Corollary 4.11:
b () = p - s(u;b9) = p - s(p; 0t 4+ lower terms),

p-i(u;a®" V) £ lower terms in p; — ;s

= a9 () + lower termsin j; —p;’s. W
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