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ABSTRACT 

We calculate the asymptot ics  of combinatorial  sums ~ a  f ( a ) ( 2 ) 8 ,  where 
,~ --- (c~1,. . . ,  (~h) with c~i ---- c~j for certain i, j .  Here h is fixed and the  c~i's 
are natural  numbers.  This implies the  asymptot ics  of the corresponding 

Sn-character  degrees ~'~,), f()~)d~. For certain sequences of Sn characters 
which involve Young's rule, the lat ter  asymptot ics  were obtained earlier 
[1] by a different method.  Equat ing  the  two asymptot ics ,  we obtain equa- 
tions between multi-integrals which involve Gaussian measures. Special 
cases here give certain extensions of the Mehta  integral [5], [6]. 
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I n t r o d u c t i o n  

The present work extends the asymptotics obtained in [3] and derives applications 

for the evaluation of certain multi-integrals with Gaussian measure. In particular, 

extensions of certain special cases of the Mehta integral are derived here. 

The Mehta integral, [5], [6], which is a consequence of the celebrated Selberg 

integral [4], [5], [6], [9], states that 

/ "" ~k H ,xi xj, e x p - 2  
l<_i<j<k i=1 

( v ~ , ) k  ~ - , ~  1 k 1 
= . f ~ - ~ -  4 • [r(1 + ¢~)]-k. 1-I r ( 1  + ~ZJ). 

j----1 

Here F is the Gamma function. 

Let ftk = { (x l , . . . ,Xk)  E Nkl X l + ' ' ' + x k  = 0 and Xl > " "  k xk}. In section 4 

of [7] we saw how to change the domain of integration in the Mehta integral from 

Ftk to l~ k ; the domain is already If( k in the form of the integral just stated. Thus, 

Theorem 3.3 below, which relates the Mehta integral I '  to the multi-integral I 

there, extends a special case of the Mehta integral. Note that  Theorem 3.3 is a 

special case of Theorem 3.2 here, which also relates two such multi-integrals. 

The evaluations and the equations between these multi-integrals are by- 

products of the study of the asymptotics of the degrees of certain Sn-character 

sequences, which we now describe. 

Also in [3] we obtained the asymptotics of 

z 
•EAh(n) 

as n --~ co and h fixed. Here 

Ah(n)  = { ( a l , . . . , a h ) l  0 < ai e Z and E a i  = n } .  

In [3] we gave several applications to the evaluation of certain multi-integrals. 

Similar sums, but with a = (c t l , . . .  ,ah) having ai = aj  for certain i , j ,  arise 

naturally. In the present paper we consider the asymptotics of such sums and 

give some applications. 

More specifically, let r l , . . . ,  r v be positive integers with rl  + .-. + rp ---- h, let 

r0 -- 0 and 

O i = { r l + . . . + r i - l + l , . . . , r l + . " + r i } ,  s o { 1 , . . . , h } =  (:JOi. 
i----1 
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Denote s ~ t if s, t E 0i for some i, and 

Be(n) = {t~ E Ah(n)] c~s ---- c~t if s ~, t}. 

Theorem 1.2 gives the asymptotics of the sums 

E f ( a )  (n --+ oo, 0 fixed). 
aEBe(n) 

Here we restrict ouselves to functions f ( a )  which are products of terms of the form 

(~i - ~y + dij) and (c~ + di), where d/j and di are constants, and i , j  = 1 , . . . ,  h. 

Note that  in [3] we considered a more general class of functions f(,~,), but the 

functions considered in the present paper suffice for the applications. Moreover, 

restricting ourselves to these functions considerably simplifies the discussion of 

[3], namely, it allows one to avoid introducing permissible functions in the sense 

o f  [3]. 

Let now Par(n) denote the partitions of n and Ao (n) = Be (n) n Par(n). As an 

application we obtain, in Theorem 2.1 below, the asymptotics of 

AEA0(n) 

(where d~ equals the number of standard Young tableaux of shape A). 

This is applied to study the asymptotics of deg(y~(Tfl)n), an object we now 

describe. 

Let Sn denote the nth symmetric group, and for each n let ~b~ be an Sn- 

character. Sequences ¢ = {¢~}~___0 arise naturally in Representation Theory. 

A useful tool for studying such sequences is the notion of "Young derived se- 

quences", introduced in [8]: For each k C Par(n), X~ is the corresponding irre- 

ducible S~-character (so X(~) is the trivial Sn-character). Given ¢ = {~bn}n_>0 

as above, its "Young derived sequence" y(¢) is defined via yn(¢) = (y(~b))~ = 

~o~bJ~X(n_j), where ~ is the "outer" product of characters. Also, ye(~b) is the 

~tl~ derived such sequence. For example, let ¢0 = 1, Cn = 0 if n >_ 1. Also let 

dim V = ~ and let ~o~ ) denote the S~-character given by the classical action of 

Sn on V ¢~n. Then (ye(¢))n = ~o~ ) (Example 1.4 of [8]). 

Let 

Z 
)~EAk(n) 

(Ak(n) are the partitions of n with at most k parts) and denote 

= = 
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where 

A = ( A 1 , A 2 , . . . )  and A q = , ( A I ' ' ' '  , A l , ~ 2  , . . .  ,A2, . ,  . . ) .  
y 
q q 

The sequences yt(zfl) are studied in [1] and [2]. The asymptotics of deg(ye(rlq))n 

are given by [1] Theorem 3.3, while the relations between the coefficients in r] 

and in ye(r]q), 1 < 6 < q - 1, are given by Theorem 1.2 of [2] (which generalizes 

Example 1.4 of [8]). 

Theorem 2.1 below together with Theorem 1.2 of [2] allow us to compute the 

asymptotics of deg(y*(~q))n (n --+ o~) in a way which is independent of [1, 

Theorem 3.3]. These two computations lead to deg(ye(zfl))n _ ClI ln"(qk  + g)n 
[2, Theorem 4.1] and deg(ye(rfl))n __ c212nU(qk + g)'~ (Proposition 3.1 below). 

Here u is a certain number, cl, c2 are explicit constants, and I1, /2 are multi- 

integrals involving Vandermonde-like polynomials and Gaussian measures. 
Equating the two asymptotics we deduce identities of the form 

I1 = (c2/cl)I2 (see Theorem 4.3 below). 

Note that  the results of [3] sufficed for that second asymptotic computation with 

the resulting integral identity only for the case 6 = q - 1 [2, Theorems 4.3, 4.4]. 

However, Theorem 2.1 below allows us to deduce corresponding calculations and 

multi-integral identities for all 1 < 6 < q - 1 (Theorems 3.2, 3.3 below). 

Certain choices of f(A) give I1 as the Mehta integral (Theorem 3.3 here), thus 
enabling the evaluation of /2 ,  which to our knowledge is a new result, and a 

variant of (a special case of) the Mehta-Selberg integral. 

In §4 we prove that certain homogeneous polynomials of the differences xi - x j  
do satisfy a property ("niceness" in the sense of [8]) which then allows us to obtain 

both corresponding asymptotics of deg(y*(r/q)), also when q _< 6. Hence, in The- 

orem 4.3 below, we are able to deduce further equations between corresponding 

multi-integrals which involve Gaussian measures. 

As mentioned above, the S,~-characters (ye(~¢)),~ generalize the classical Sn- 

character (ye(¢)),~ of [8, Expl. 1.4]. The multiplicity of X~ in (ye(¢)),  is s,(A), 

the number of 6-semi-standard tableaux of shape A. Theorem 1.2 of [2] gives 

the multiplicities b(e)(#) of X~ in (ye(rfl)),, but only when g _< q - 1. When 

q - 1 _< 6, Theorem 4.5 below gives an approximation of b (*) (#) by a polynomial 

a(*-v+l)(#), where a(S)(x) is obtained from an explicit polynomial a(°)(x) by 

"partition"-integrating a(°)(x) s times. 

ACKNOWLEDGEMENT: We would like to thank G. Schechtman for some very 

useful discussions we had with him while working on this project. 
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1. A s y m p t o t i c s  fo r  m u l t i n o m i a l  s u m s  

In this section we calculate the  asympto t ics  as n --+ co, of E_~cB0(,~)f(a--)(~) ~, 

when f is essentially a monomia l  in the as  - a t ' s  and in the a t ' s  and Be(n) 
are the ( a l , - . . ,  an) ' s ,  a l  + " '" + as  = n, with some "0" identifications. This  is 

T h e o r e m  1.2 below, which "0" generalizes [3, Thm.  1] for such f ' s .  In compar ison  

to [7] and to [3], the  restr ict ion to such f ' s  considerably simplifies the  calculat ions 

while all the appl icat ions  known to us so far involve only such f ' s .  It  is quite 

clear t ha t  wi th  some more  work, Theorem 1.2 can be proved for a much wider 

class of funct ions f .  

We define the following: 

Notations 1.1: N = {0, 1, 2 , . . . } ,  

Ah(n) = { a  = ( a l , . . . , a h ) l  V C~i e N and a~ + . . -  + ah = n}. 

L e t r l , . . . , r p E N - { O } ,  r l + . . . + r p = h ,  r 0 = O ,  and 

O~ = {rl  + " - + r i - 1  + 1 , . . . , r l  + . . .  + r i } ,  

so t ha t  { 1 , . . . , h }  P = U i= l  Oi. Denote  

Bo(n) = { a G  An(n)[ as  = a t  i f31  < i < p with s,t  E Oi}. 

Define s~t if there  exists 1 < i < p with s, t C 0i; otherwise s*t. Thus  
0 0 

Bo(n) = {a  e An(n)l as  = a t  if s~t}. 

In the  sequel we denote  ~ by ~ and ~ by ~ .  Let  at,  ast C N, 1 < s, t ~_ h, and 

fix 

f ( a ) =  r I  H ( a s - a t + d s t v )  • H (at+dt~)E'. , 
l~_s,t~_h v = l  t = l  v = l  

where the dst's and the  dt's are constants  and e t ,  E {0, + l } .  Clearly, i f a  E Be(n) 
then  f ( a )  d fo (a ) ,  where d a~ "~- " = H s ~ t  H v = I  d s t v  and 

fo( ) = i - [ ( a s  - + es o) • 1-[ + 
v=l  t= l  v=l 

a t  Denote  Y~=~ sty = bt. Finally, recall t ha t  wn ~-.~ zn if limn_~(w,~/z,~) = 1. 
We can now s ta te  
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THEOFLEM 1.2: Recall that h is the length of ~_, and that the at's and the ast's 
determine the factors of the monomial f(c~). As n -+ 0% 

S ( ~ )  ___ c .  s . , ~ " ,  h ~ " ,  

atE Bo ( n ) 

where 
h 

flh2 ~1 ~__ E b t l (p  1 ) ~ ,  ~ -  + ~  ~ ~ +  + - + 

l < s ~ t < h  t = l  

and 

1 ~ ~(h-1) 

e = t , ~ )  ' h - ' ~ + ~  ' 

a s t  

l < s ~ t < h  v = l  

I : f ...... f H ( x i -  xj)~'J "exp (-~ G r.x?~ d(p-1)x 
?~lXl~C"'-t"''xp:OI~i~j~p t 2 ~ ' ' )  " 

Here 

Proo~ 

STEP 1: 

e i j  -= ~ ast .  
sEOi,tEOj 

The proof consists of the following four steps: 

Write f ( a )  = d.  Yo(a) as above, fo(a) = PI" P2, where 

P~ = 
a~t h at 

H H(v~-c~ t+d~tv )  and P 2 =  I-I I I  (~t+dtv)~t~" 
l<_s~t<_h v = l  t = l  v = l  

Expand PI: PI = 1-Ii<s~t<h(a~- at) ast + P{, where P{ involves the other terms 
of P1; those are clearly of lower degree in the as - at's. Finally, write fo(a) = 

f l (a)  + f2(e~), where f l (a)  = I-[l<8~t<h(a~ - at) as*. P2 and f2(a) = PI*" P2. 
We shall prove Theorem 1.2 with f l (a)  replacing fo (a). In that proof, notice 

how each term a~ - at in fl  (a) contributes a ~ to the asymptotics. Hence, 
expanding f2 (a) and computing the corresponding asymptotics, one obtains the 

same exponential growth h ~", but a smaller power of n, namely n "' , where u' ~ u. 
It follows that 

r fl,O,(o/ F~ y0( , , )  
aEBo(n)  aEBo(n)  
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STEP 2: Let el ~ A h ( n )  and define c(~l) = (c l (a ) , . . .  ,Ch(ei)) via (i t = n / h  + 

c t (e i )v ln .  Given 0 < p E R, denote 

Bo(n,p) = { a  e B0(n) I I~(a)l < p, t = 1 , . . .  , h} .  

For fixed p and for n large, (it ~- n / h ,  t = 1 , . . . , h ,  so (it is large, hence 
Stirling's formula applies to (it!. Moreover, for such ~l, 

fi(el) ~ (c~(a) -c t (e i ) )  <~:' . v f~  ~ t  . E 

Ll<~t<_h 

STEP 3: Fix p > 0, let n be large and cl E B o ( n , p ) ,  and approximate 

by Stirling's formula as follows: 

Now 

SO 

n! (:)- 

t = l  

C n i 

,~1~'+½= (h)~'"+hl2"l'~t ( 1 +  ~ ]  . 

Clearly, the ½ on the right can be discarded. Thus 

( : )  1 ~h-1 (1)  -~-z "~-- ('-~,] "hn+h/2"~, 

where 
h ~+~v'~ rl (1+ c~h~ 

Q = t : l  ~ , /  

Let In = loge; then 

( n ctx/-n) ln 1 ln(Q) = E ( h  + + v ~ ] "  
t 

Expand ln(1 + x )  = x - x 2 / 2  + x 3 / 3  - + . . .  ( if Ixl < 1). 
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hence 

Multiplying and summing over t (note that ct + "" + Ch = 0) we deduce that 

and we conclude: 

h 2  ln(Q) = ~(c  1 + - - .  + c 2) + 0( ), 

1 h 2 2 
- -  ~ e - ~ ( c i  + ' " + % )  
Q 

Conclusion: Let a E Bo(n,p), n --+ oo; then 

h-1 
(1.2.1) ( : )  _'~ (.___~2~) h-1 . hh/2 . ( 1 )  ~' 

Hence, by Step 2, 

(1.2.2) 

where 

A2 = A2(c) = 

and 

h 2 2 . e - g ( c l + ' - ' + % )  . h n. 

f l  (a)  --~ A1 • A 2 '  n ~"  h ~ ,  

H (Cs - - c t )a ' t ' e xp ( - -~ (C l (~ )2+ ' ' '+Ch(Ot )2 ) )  ' 
l<8~t<h 

h 

w = -  ( h - 1 ) + ~  E a s t + E b t "  
l<_s~t<_h t=l  

The dependence of the right hand side on a appears only in A2 = Apo, • Aexp, 
where 

Notice that  Apol is polynomial in the ct's, while Aexp has rapid Gaussian decay 

in the ct's. Thus, by a standard argument (like the classical proof of the Central 

Limit Theorem of Probability), it follows that 

lim [ l im Sum(n) ] 
p~o~ L,~oo Su - -~ ,p ) J  = 1 ,  

where 

(:)' E fl  (a) ; S u m ( n ) =  ~ f l ( a )  and Sum(n,p)=a~so(mp) 
a6Bo (n) 



Vol. 112, 1999 IDENTITIES BETWEEN MULTI-INTEGRALS 309 

i.e. the  a sympto t i c s  of Sum(n)  can be calculated by taking l i m p _ ~  in the 

a sympto t i c s  of Sum(n,  p). This  we do next.  

STEP 4: In the no ta t ion  of Step 3 it clearly follows tha t  

Sum(n,  p) - A1 - n ~ • h z~ • a, 

ct = ct(ot) and 

(7 z ( ~'h 4, ~'~ :2 11 . . . .  ). 
~EBo(n,p) l<s~*t<h 

Denote  5i = 5i (a)  = erl+...-I-ri_l+l . . . . .  erl+...+ri,  1 < i < p and 

A p ( n , p ) =  51 , . . . , 5p )  a l l l S i l < p a n d ~ + S i - x / n • N a n d  = 0  . 
i =  

Notice t ha t  ~ -+ 5(~) = ( 5 1 ( ~ ) , . . . , @ ( ~ ) )  is a bijection from B o ( n , p )  onto 
h 

A p ( n , p ) ' A l s ° , ~ t = l c 2 t  = Ei=lP riS~ and 

I (Cs--ct)ast : I (5 i - - (~J )e i ' '  w h e r e  eij ~--- E ast" 
l <s~t<_h l <iT~j<p seO,,tEOj 

Thus  

5_EAp(n,p) l<i<j<_p i=1 / 

Since ~ = ~  r~5~ = 0, the above sum in the exponential  is a ( p -  1) fold summat ion .  

Approx ima t ing  a by an integral expression (see, for example,  [7, p. 127]) we 

ob ta in  a ~ • I ' ( p ) ,  where 

/ ' ( p )  = 

rlXl+..,~_rpxp=O l<iT~j<p 2 
Ixll ..... I~pl<p 

Conclus ions:  In the  previous nota t ions  

Sum(n ,p )  ~_ A 1 .  I (p )  . n ~ + ~  . h En . 

Taking  limp-~oo we obta in  Sum(n)  ~_ A1 • I ' .  n~+~:¢~2 ~ • h En, where 

I '  = f ...... f I (xi  - xj,.)~° exp - - -  E r i x  d(P-1)x .  
r lXl+" '+rpTp=0 l<iT~j<_p i=1 / 
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Finally, make a change of variables ui = v/h xi in I ' .  Clearly, I' is transformed 
into I, while the factor 

(-'~h)~-~eijq-P-1 : h-½~z~"tast-½(v-t' 

now multiplies the previous constant 

A . d = ~ , v / _ ~ ]  • .d, d =  H H d ~ t , .  | 
8~t V~-I 

2. Transit ion to d~ 

Let 0, Bo(n) and f ( a )  be as in 1.1; define 

A0(n) = Bo(n) fq Par(n) = {a C Bo(n) l al >_ a2 >_.." >_ ah }, 

and consider the asymptotics of 

z 
aEAo(n)  

The previous calculations lead essentially to the same result, the only difference 

being that the domain of integration now has the extra condition xl > ." • > Xp. 
Thus 

THEOREM 2.1: Let Bo(n) and f (a)  be as in 1.1 and A0(n) = Bo(n) fq Par(n). 

E.-eAo(.) f (a) (~)  ~ "~ c .  e l .  n u " h B n ,  w h e r e  c a n d  u a r e  given Then in Theorem 
1.2 and where 

I 1 ~- 

r l x x + " ' + r p x v = O  l < i ~ j < _ p  i=1 
x l  >_-..>zp 

Recall 

' e i j  = ~ a s t ,  c = . . 
sEOi, tEOj 

a., ~h 1 ~-~bt l ( p  1) fl 

s ~ t  v = l  l < s ~ o t < h  t : l  

calculate the asymptotics of Y~eAo(,~) f(A)d~, where dx denotes the Next, w e  

number of standard Young tableaux of shape A. 
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T H E O R E M  2 . 2 :  Let  ast, at E N a n d  let 

f (/~ ) ~- H H (/~s - )~t -b dstv ) " ( /~t + dtv ) , 
l<s<t<h v = l  t = l  v = l  

with d~t~ and dt~ constants and Ao(n) as above. Then 

f(A)d~ ~- e2. I2" n ~ " h ~ ,  

where 

and 

f l h  2 1 

l<s<t<h 
s~t 

h t i p  1 /3 
a~t + ~ at -- -~ ~ r2i + ~ (P -- 1) + ~,  

t = l  i=1  

c 2  = \ - ~  ] . ~', 

I2 = f ...... f [ I  
rlXl~-"'-t-rpXp =0 l<i<j<_p 

CCl~..-~X p 

(again, eq = ~-:~seo,,teoj ast). 

d ! 

as t ] 

H (t - s)z I-[ d~v 
l ~s<t<<h V=I 

s~t 

Proof: By the Young Frobenius formula, 

( ~ )  l~l<s<t<h ( /~s-  ~ t - } - t - $ )  

l l s = l  l l t = l  ~, s 

hence f()~)d~ = g(A)(~)Z, where 

h--1 h-s 
g ( A ) = f ( ) O "  I I  ( A s - A t + t - s ) ' ' H  H ( A s + t ) - ~ = M I " M 2 '  

l<s<t<h s = l  t = l  

with 

and 

M 1 ~- 

ast 

H [(~ - ~ + t -  s ) '  I I ( ~  - ~ + d~)]  
l<s<t<h v = l  

h-1 h-s h as 

I I  - 
s = l  t = l  s = l  v = l  
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Rearranging terms, we can write 
! ! 

a s t  h a s 

M l :  H H (As-At+d'st~) and M 2 = H  H(As+ ' d ~=.,,.___~.. 
l<_s<t<_h v : l  s = l  v : l  

# Here ast = ast + ~, 

I dstv, 1 < v < ast, 
d'st v t 

t - - s ,  ast + l < v < ast + /~, 

a s  # al~ b~ = Ev=I gsv : as, a~ : as + Z(h - s) and b' s = ~,=l  c~, : as - ~3(h - s). 
Appiying Theorem 2.1 we have 

E f(A)d~= Z g(A) ~_ c21:nU'h ~" 
AEAo(n) AEAo(n) n---+(x) 

where 

and 

1 9 9h 1 ' + ~ b ; +  (p-1)+7 ,  
u2-  2 + 7  Z ast 

l < s < t < h  t = l  
s ~ t  

(" 1 ~n(h-1) 

[ n]  e'= II ,t',v : II  ( t -sy  d~., 
,<:<,<~~ L.=l ~<:<<<<._ ~ _ v=l 

f ...... f l-[ (x '-~D~: 'e~P- ~ r ,x  ~(~-'>x. 
rlxl-~.,.-brpxp=O l~_i<j~_p i=1  / 

X l > . ' " ~ _ x p  

l Here e~j = ~seo, , teoj  %t" 
' +/7, and Simplify u2 first: ast = ast 

E 1= E 1- E 
l~8(t~_h l<_s<t<h t < s < t < h  

s~l~t s ~ t  

(s ineeEl  = ~ E 1) , hence 

E -;,-- E 
l < : s < t ~ : h  l < s < t < h  

s ~ t  s~i 

= _ _ ~ 1  
1 t h ( h  1) ~ r i ( r i -  1) 

i=1  

as t+  h ( h - 1 ) - - ~ E r i ( r i - 1 ) .  
i----1 
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Also, b~ = at - f l (h  - t) ,  hence 

h h 

= E a t  2 
t = l  t = l  

Note also that  ~i=lP r i (r i  - 1) = Ei=lP ri2 _ h. Thus 

U 2 - -  

fl h 2 1 h fl P 1 fl  

l < s < t < h  t = l  i = l  
s ~ t  

Finally, 

! ! 
eij  = E a~t = E (a~t + fl) = e i j  + f l r i r j ,  

s E O i , t E O j  sEO~,tEOj 

since e i j  ~ EsEOi,tEOj ast. 
Note that  u2 in Theorem 2.2 can also be written as 

u 2 = -  fl(h 2 - 1 ) + [  E 
l<_s<t<h 

s~ t  

h 1 
(ast + fl) + E as + -~ (p - 1). 

3. D e g r e e s  of  Y o u n g  der ived  sequences  

Let ~?q = {~q}~>_0 denote the Sn-character sequence obtained from an 

S~-character r] = {71~}~_>o by a q-column dilation of the Young diagrams, and 

let yZ(r/q ) = {yt(rlq),~}n>_0 denote i t s / th  Young derived sequence as defined in [8] 

(see also the Introduction). In [2] a formula, valid for q _> 1 and 0 < l < q - l ,  was 

given expressing the coefficients of the irreducible characters in yl(rlq) in terms 

of those in r 1 and of semi-standard Young tableaux. 

If the Young diagrams of r] are of height k, then the Young diagrams of yl(rlq) 

are of height qk  + 1. Let aij ,  1 <_ i < j <_ k be integers and let F = F ( x )  be the 

function on N k given by 

F ( x )  = Y ( X l , . . . ,  xk )  = 

Let 

?Tn ~-- 

1-I (zi  - xj)  a ' .  
l_<i<j<k 

E F(A)Xx (Ak(n) = {A • Par(n)l "~k+l = 0}), 
~ e A k ( n )  

where X~ is the irreducible Sn-character associated to A. By [2, Theorem 1.2], if 

0 < t < q -  1 then 

uEA0(n) 



314 P . B .  C O H E N  AND A. R E G E V  Isr. J. Ma th .  

where 0 is determined, as in previous sections, by specifying integers r l , . . . ,  rp 

summing to qk + I. Here p = kl + k + 1 and 

= I 1, i = m(l  + 1) + 1 , . . . ,m(l  + 1) + l; m = 0 , . . . ,k ,  
/*i / q - I  i = m ( l + l ) ;  m = l , . . . , k .  

The formula for b (t) (#) = b(0 (#1,.. . ,  #qk+Z) is given by 

k 

b(O(#) = F(#q,. . .  ,#kq){l!2!'-" (/-1)!} -(k+l) H H ( # , - # t + t - s ) .  
rn=0 mqq-l Ks < tKmq+l 

The function b (0 (#) is of the type that can be handled using Theorem 2.2 of the 
present paper. In particular, we shall show the following 

PROPOSITION 3.1: With  the above notation we have 

deg yt(~q)n ~_ C . I . n  ~ . ( q k  +l)n-u+½ 
h e - +  Oo  

where 

and 

with 

C = ( ~ ) l  (qk+l-1){ll2l ' ' "  . . . . . . .  (q l 1)!}k{1!2! (l 1)!} -(k+l), 

1 

2 1<_i<jK_k 
aij - kq2(k + l) + 2 

I :  / ' ' ' ~  V(Xl, . . . ,Xkl+k+l ) e x p ( - -  ll]xl,21,q) d(kl+k+l--1)x 
k~l,q 

k m(l+l)+l k 

~k,l,q = {Xl  ~ " ' "  ~ Xkl+k+l [ E E Xi "~ (q - l) E Xm(l+l) ~" 0} ,  
m=O i=m(l+l)+l m = l  

k 

v(.)-- H 

and 

m=O {m(l+l)+l<i<j<rn(l+l)+l} 

X H (Xi( l+l)-  Xj(l+l))ai' H ( X i -  xj)rirJ 
l <i<j<k l <_i< j<_kl+k+l 

k m(l+l)+l k 
2 2 

= -- Xm(l+l), 
m=O i=m(l+l)+l m=l 
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Before proving Propos i t ion  3.1, we give the appl icat ion to identit ies be tween 

mult i- integrals .  In [2] the asympto t ics  of deg yZ(??q)n was compu ted  in ano ther  

way from deg 7]~ and general  results abou t  Young derived sequences. This  also 

leads to a mult i - integral  expression, but  of a different form to t ha t  of Propos i t ion  

3.1. Equa t ing  the  two asympto t i cs  leads to an identi ty between mult i- integrals .  

This  was carried out for the case q = l - 1 in [2, Theorem 4]. We ob ta in  the  

following general izat ion of tha t  result. 

THEOREM 3.2: With the above notation and letting Dk = Dk(x) be the function 
on R k given by 

D (x) = [ I  xj), 
l~_i<j~_k 

let I' be the multi-integral expression 

k 
I/ = / ' ' ' ~ S  F(x)(Dk(X))q2exp(-qEx2)d(k-l)x 

k i=1 

where k 
s k = ( x , >  >_xklZx =0}. 

i=1 

Let I be the multi-integral expression of Proposition 3.1, so that 

/ £  1 2 d ( k ' + k + z - 1 ) x .  I . . . .  V(Xl,...,XklwkWl ) e x p ( -  ~llxllk,l,q) 
k, l ,q  

Then we have 

where 

I' = CI 

C ' = (  1 ) \ k ]  

x {1!2!- . .  ( q -  l - 1)[}k{l!2! . . .  ( q -  1)!} -k .  

Notice t ha t  the constant  C r in the  above theorem does not depend on the  

funct ion F .  

If  we subs t i tu te  F(x) = Dk(x) v in Theo rem 3.2, we obta in  

THEOREM 3.3: In the notation of Theorem 3.2, let F(x) = Dk(X) p. Then 

I ' = C ' I ,  

where 

It : / ' ' ' ~  Dk(x)P+q2 .exp - - q E x ~  d(k-1)x~ 
k i----i 
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C' and I are as in Theorem 3.2, and here 

k 

: I I  1-[ 
m = 0  {m(l+l)+l<i<j<rn( l+l)+l}  

X 1-I  (Xi(l+l) - -XJ( l+l )  )p r I  
l< i< j<k  

X i -- x j ) r i r j  

l<_i<j<kl+k+l 

with  the ri as before. 

NOTE: 11 in Theo rem 3.3 is a Mehta  integral, hence it can be evaluated,  which 

then  implies the  evaluat ion of the mult i- integral  I .  

We proceed now to prove Proposi t ion 3.1 and Theorem 3.2. 

Proo f  of  Proposi t ion 3.1: We apply  [2, Theo rem 1.2], T h e o r e m  2.2 and "deg" to  

{1!2! . . .  (1 - 1)!}(k+l)yl(~q)n = 

where, of course, 

k 

f ( . )  = F ( . q ,  , .kq) I I  I I  

f ( I z )X .  
p, EAo(n) 

(#~ - # t  + t - s ) .  

m =0 {mq+l<s<t<mq+l} 

We are dealing with par t i t ions  of height h = qk + 1 and in order to apply  

T h e o r e m  2.2 we rewri te  f ( # )  in the form 

f (~)  = 1-I ( . s  - ~ + ds~) b- 
l<s<t<qkA-I 

and calculate  the bst and dst. Then  Theorem 2.2 (with fl = 1) gives a result  of 

the form 

{1!2! . . .  (l - 1)!} (k+l) deg yl(TIq)n ~_ e .  I .  n u . (qk + 0 n-u+½. 
n ~-~ 0o 

We have to show tha t  this agrees with the formula  of the proposi t ion.  The  

cons tant  c is given by 

c = I 1 ~ t  (t - s). 
s~t  8~t 

Here 1 < s < t < p = (kl + k + l) and s ,-~ t is the  equivalence relat ion wi th  

respect  to  the  0 of the  proposit ion,  namely  t ha t  de te rmined  by the  integers 

= ~ 1, i = m( l  + 1) + 1 , . . . , m ( l  + 1) + l; m = 0 , . . . , k ,  
r i  ( q - l ,  i = m ( l  + l); m =  l , . . . , k .  
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We have 

and 
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u = -  ((qk+l) 2 - 1 ) + ~ E ( b s t + l ) +  ( k l + k + l - 1 )  
s~t 

I = f / ~ l < _ ~ < j <  p 

where, for l < i < j _ < p ,  

The region 9~ in IR p-  1 is 

1 2 rpX2p))d(p-1)x I I  (x, - ~j)~,~ exp(-~(~ lXl  + - - - +  

sEOi tEOj 

317 

= {X 1 > ' ' '  > Xp] r l x  1 + ' ' '  -4- rpXp = 0}. 

Now by the definition of F and the formula for f (# )  we have 

k 
. _ . alj II H , . I  II II 

l<_s<t<_qk+l l<_i<j<k m=O mq+l<s 
< t <--rnq+/ 

Comparing both sides we have 

b~t = { aij, s = iq, t = jq; l <_ i < j < k, 

1, mq+ l <_s < t <_mq+l; rn=O, . . . , k .  
Hence 

E E bst = { ai,j,, i = i'(l + l) , j  -- j'(l + l); l <_ i' < j' <_ k, 

seo, teo~ 1, m(l + 1) + 1 <_ i < j < m(1 + 1) + l; m = 0 , . . . , k ,  

so that  
k 

l <i< j<p rrt=0 {m(l+ l )+ l <_i<j<ra(l+ l )+l} 

× 1"[ (x i ( l+ ' ) -  xJ('+~))a'~ 1-[ ( x i -  x S  '~' . 
l<i<j<k l<i<j<_klA-k+I 

This is the function V(x) of the proposition. We now turn to the computat ion 

of u. By inspection of the formula for bst we have 

k 

E b~t= E a i j + E  E 1 
s~t  l<_i<j<_k m=O {mq+l<_s<t<_mq+l} 

= E aij + ~ ( k  + 1)/(/- 1). 
l_<i<j_<k 
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Viewing the s, t with s ¢ t as the complement of the s, t with s ~ t gives 

1 1 
E 1 = -~(qk + l ) ( q k  + l -  1) - ~ k ( q -  1 ) ( q -  l -  1). 
s¢t 

These formulae sum to give 

E(bs ,+  1) 
s¢t 

and on substituting into u and simplifying we have finally 

1 1 !k 
u = 5  ai j -  kq2(a+l)+2 ' 

l~i<j~k 

which is the expression of the proposition. 

Looking now at the expression for the constant c, we observe that 

H jbst 
~ s t  = 1 

S~t 

and 

H ( t -  s) = {1!21... ( q -  l -  1)It k, 
s~t 

so that  we obtain the expression of the proposition for C since 

C = {1!2!--. (1 - 1)!}-(k+l)c. 

To complete the proof, we observe that 9l = 91k,l,q and that  the integral I we 

have derived agrees with the integral I of the statement of the proposition. | 

The proof of Theorem 3.2 will follow easily once we remark that by the change 

of variables 
1 

x i ~ - + ~ x ~ ,  i = l . . . , k  

and by some routine simplifications, the result of [2, Theorem 4.1] (with a cor- 

rection: the v ~  in c of [2, Thm. 4.1] should have been v/~), which gives the 

alternate computation of deg yZ (~q),~, may be restated as follows. 

PROPOSITION 3.4 (2, Thm. 4.1): With  the above notation we have 

where 

deg yt(ztq)~ ~_ c' . I '  . n u . (qk + l) n -u  

1 1 
u =  -~ E aij - kq2(k + l) + 2 ' 

l<_i<j<__k 
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. . ( q _  : ) ! } k  c, (_~2~)qk ' -  k_ 1,2,. . .  

and I '  is the multi-integral expression o f  Theorem 3.2. 

Proo f  o f  Theorem 3.2: Equating the asymptotics of deg yl(~q)~ given on the 

one hand in Proposition 3.1 and on the other in Proposition 3.4, we have 

C . I .  n u . (qk + l) ~-~+½ = c' . I '  . n u . (qk + l) n -u  

so that  

C' = C .  (c')-:  - v/qk  + l, 

which on simplifying gives 

( k )  ½ v / ~  +/{E2! " " " ( / -  1)'}-(k+:) 

x { 1 ! 2 ! . . . ( q - t -  1)!}k{l!2! . . - ( q -  1)!} -k 

as required. | 

4. "N ice"  p o l y n o m i a l s  

Theorem 3.7 of [8] was proved for functions satisfying a "niceness" property. Here 

we show that  the "p.h.d." polynomials defined below do satisfy that  property, 

hence that  "Theorem 3.7" applies. 

Definition 4.1: The polynomial a ( x l , . . .  ,Xh) is called p.h.d, if it satisfies the 

following three properties: 

(p) If A1 > "'" > .~h then a(A1,. . . ,  "~h) > 0 (positive), 

(h) a(x)  is homogeneous (homogeneous),  

(d) a(x)  is a polynomial of the differences xi - xj's: a(x:  + s , . . . , X h  + s) = 

a ( X l , . . . , X h )  for all s (differences). 

Definition 4.2: Partition summation and partition integration: 

For # = (#1 , . . . ,  #h) E ]R h and a = a ( x : , . . . ,  Xh) a function on N h, define 

// /? p" i(#; a) = d x : . . ,  dxh .  a(x l , . . . ,Xh) .  
2 h + l  

Assume further that  # is a partition; then define 

# :  /zh 

p , s ( # ;  a ) =  E "'" E a(A1,. . . ,Ah). 
A1 ~ .$2  Ah=P,h+l 
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The  discussion in 4.6-4.10 below shows tha t  in the sense of [8, 3.6] p.h.d. 

polynomials  are "nice": p .  i(#, a) approximates p .  s(#, a). Hence we can apply 

Theorem 3.7 of [8] and essentially restate tha t  theorem as: 

THEOREM 4.3 (8, Thm.  3.7): Let  

f . . .  f a(x, , . . . ,Xh) ~ I  (xi--xj)'exp -- x~ d(h-1)X 
x l + ' " + Z h  =o i < _ i < j ~ h  i = l  

xl>_,,,>_x h 

(V for Vandermonde, G for Gaussian measure, I for integration). 
Let a polynomial a = a(xl , . . .  ,Xh) be p.h.d, of degree d, and 

Let 

Then 

Z ~-- ( Z l , . . .  , Z h + l )  E ~hq-1. 

p = p ( z l , . . . ,  Zh+l) ---- p" i(z; a). 

VGIh+I(p) = c(h). VGIh(a), 

where 
c(h) : ( h ~ )  ½(d+h-(½)h(h-1)) i .  27r 

h + l "  

More generally, given a = a(x) = a(xl , . . . ,Xh),  define the sequence of 
polynomials a (~) in s + h variables by induction: 

a (0) ---- a ( O ) ( x l , . . . , x h )  -~ a ( X l , . . . , X h )  

and 

a ( s + l )  ---- a (~+1) (z l , . . . ,  Zh+~+l) = p" i ( ( Z l ,  • • • ,  Zh+s+l);  a(~)). 

If a(x) is p.h.d, then 

VGlh+s(a(S)) = ( ~  c(h + J)) =o 

i.e. 

VGIh(a), 

f ... f 
Xl +"'+Xh+8= 0 

zl->'"-->=h+s 

h + S E x2 d(h+s-1)x = 
• exp 2 i=1 
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. 

j=O 
f f ~(x~,. . . ,xh) 

:r 1 + . . , + X h = O  

xl>..->~ h 

l<_i<j<_h '= 

Remark 4.4: The discussion in 4.6-4.10 also yields an approximation solution 

to the following problem: 

Let ~]~ = ~aeA~(~) F(A)Xa and write 

(Yg(I]q))n = E b(£) (]~)X#" 
~eAqk+t(n) 

The multiplicities b(Z)(#) were calculated only for 0 _< g _< q -  1 ([2], Thm. 

1.2). The problem of calculating the b(e)'s for q _< g is open. However, we shall 

prove 

- -  x a~j (]~) as  THEOREM 4.5: Let  F (x )  = I-ii<_i<j<_k(xi 3) with b (e) in 4.4. 

Define 

a(O)(x) = F(xq,X2q,. .. ,Xkq) " ( YI [I (xi - x j ) )  
t=0 tq+l<_i<j<_tq+q-1 

• (1!2! . . ,  ( q -  2)!) - k - l ,  

then construct {a (s)}~>_0 inductively as in 4.3: 

Then: 

(4.5.1) I f  q <_ ~ then b(e)(#) is a polynomial of  the #i - # j ' s ,  

(4.5.2) aIs)(x) is p.h.d, for all s >_ O, and 
(4.5.3) b(e)(#) = a(~-q+l)(#)+ lower terms in the #i - #j 's.  

Thus, b (~) is approximated by a (e-q+1) (in our earlier notation, b(e)(tt) 

a(~-q+l)(tt)). 

To establish "niceness", we proceed as follows: 

LEMMA 4.6: Let  a = a ( X l , . . . , X h )  be p.h.d, of  degree d, and let p(z)  = 

p ( z l , .  .. , Zh+l) = p" i(z,  a). Then p(z) is again p.h.d, and of  degree d + h. 

Proof: By Lemma 3.4 of [8] we only need to check positivity (p): 

Let #1 > "'" > #h+l and show that p . i ( p , a ( x ) )  -- P (# I , . . . ,Ph+I )  > 0. 



322 P. B. COHEN AND A. REGEV Isr. J. Math. 

Indeed, let e > 0 satisfy #i - e > #i+1 + ~, i = 1 , . . . ,  h. If 

~ti--~>Ai>]~iA-l~-E, i = 1 , . . . , h ,  

then A1 > " "  > Ah, so a (A1 , . . . ,  ~h) > 0. By the (multi-variables) mean-value 

theorem, it now follows tha t  for some (~1 , . . . ,  ;~h) with 

# i - ¢ > ) ~ i > # i + l + e ,  i = l , . . . , h ,  

we have 

_ f,z-~ f.~-~ , . . . ,  
P ( # I , . . . ,  #h+l)  > d x l ' "  dXh" a(xl Xh) 

J 1~2+ ~ J P h + l  -}-~ 

,) = #i - # i + 1 -  2e " a ( ) ~ l ,  • • • , ) ~ h )  > O .  

Remark 4.~ 
of degree d. 

Let  

p l ( b , d ) = p l ( b l , . . . , b h , d l , . . . , d h ) = f b  d~ 
1 

and 

Let bi < di E N, i = 1 , . . .  , h  and let f ( x l , . . .  ,Xh) be a polynomial  

~b dh dxl""  dXh ' f (X l , . . . ,Xh)  
h 

dz dh 

p2(b,d) ~-p2(bl,...,bh,dl,...,dh)= E "'" E f(il"' ' ' ih)" 
il=bl ih=bh 

Then  bo th  pl(b,d) and p2(b,d) are polynomials in bl , . . . , bk ,d l , . . . , dk ,  of 

total  degree d + h. Moreover, it is well known tha t  p2(b,d) = pl(b, d) + r(b, d), 

where r(b l , . . . ,bh ,d l , . . .  ,dh) is a polynomial  of total  degree < d + h -  1 in 

bl, . . .  ,bh,dl,. .. ,dh. 

COROLLARY 4.8: Let f = f (Xl , . . . ,Zh)  be a polynomial of degree d and let 

#1 > " "  > #h+l  (# is a partition). Then (see 4.2) 

p f )  = p .  f )  + 

where both sides are polynomials in # 1 , . . . ,  ]~h+l olC degree d + h, but ~(#) is of 
degree _ d + h -  1. 
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LEMMA 4.9: Let  f = f ( x l , . . .  ,Xh) and # = ( t z l , . . .  ,#h+l)  be as in 4.8, and 

assume further that f is a polynomiai  of the xi - x j  's; then this is also true of 

f (# )  and p .  s(p; f ) .  

Proof: By Lemma 3.4 of [8], p .  i(#; f )  is a polynomial of the xi - xj's, hence 

it suffices to check that  for any s E Z, 

p ' 8 ( ( ] 2 1  -{ -8 , . . . , ]Zh- t -  1 -{-8); f )  ~- p . s ( ( / Z l , . . . , # h + l )  ; f ) .  

This follows, since 

I~l+s l~h+S 

P ' S ( ( t t l + S , . . . , # h + i + s ) ; f )  = ~ ,  . .  

#i  #h 

= E  E 
#1 #h 

=Z E 
/]1 =~t2 ~hZ~th+l 

Let a ( x l , . . . ,  Xh) be p.h.d, of degree d; then Remark:  

f ( ) q , " " ,  Ak)](.X~=ni÷s) 

f(Vl +S, - - . ,Vh +S) 

f ( ~ l , . . . , ~ h ) = p ' s ( ~ f ) .  | 

p-i(/z; f )  =p (p l , . . . , /Zh+ l )  

is p.h.d, of degree d + h. Assume now that tt f- n and denote 

n 
#i = h+------1 + c i x /n '  ci = c i ( # ) ,  i = l , . . . , h + l .  

Then (tti --+ #i - h-~+l) 

f--d+h 
P ( ~ l , ' - - , l ~ h + l )  - - - - p ( c I V ~ , - . . , C h + I V ~ )  ---- ~ / n  p ( C l , . . . , C h + l ) .  

Moreover, i f  ~t 1 > - - .  • P h + l  t h e n  c1 > - ' '  > Ch+l, h e n c e  p ( c l , . . .  , C h + l )  > 0.  

In Proposition 4.10 we have summarized the above discussion; it implies that  

p.h.d, polynomials are "nice", and this implies our Theorem 4.3. 

PROPOSITION 4.10: Let  a --- a ( x l , . . .  , xk)  be a p.h.d, polynomial  of degree d, 

let # ---- (#i,--  •, #k+i) be a partition, and denote 

/-L1 ~k 

b ( # ) = p - s ( p ;  a ) =  Z "'" Z a(Ai , . . . ,Ak) ,  
~ 1 ~ 2  ~k~l~k+l 



324 P.B. COHEN AND A. REGEV Isr. J. Math. 

j•/tt 

~ttk 
p(~) = p. i(,; a) = dXl . . ,  dxk.  a ( z l , . . . ,  xk). 

2 kq-I 

Write b(#) = p(#) + f (#) .  Then all three terms are polynomials of the differences 

Pi - #j ,  b(p) and p(#) are of degree d + k while the degree of  f (#)  is at  most  

d +  k - 1. We have p(p) = x/~d+kp(c)(c = c(#)),  and i f # l  > '--  > #k+l then 

p(c) > O. Also, p(z) is p.h.d. 

NOTE: Expanding f (#)  as a sum of its homogeneous terms, we similarly have 

d ÷ r  - 1 

5=0 

It clearly follows now that ,  in the notat ion of [8, 3.5], such an a(x) is "nice", 

hence Theorem 3.7 of [8] applies to yield Theorem 4.3 of the present paper.  

Alternatively,  it clearly follows from the above that  

~zEAk+l (n) n-+~x) ~EAk+I (n) 

The  asymptot ics  of bo th  sides are done in [8] (follow the proof  of Theorem 3.7 

there) ,  which leads to Theorem 4.3 here. 

Before proving Theorem 4.5, note tha t  4.6-4.10 clearly imply 

COROLLARY 4.11: Let a ( x l , . . .  ,Xh), b ( x l , . . .  ,Xh) be two polynomials of the 

xi  - x j ' s  such that  a(x) is p.h.d, and b(x) = a(x)+ lower terms in the xi - x j  's. 

Then p.  s(z; b) is a polynomial of  the z~ - zj 's, and p- s(#; b) = p- i(#; a ) +  lower 

terms in the Pi - ~tj's ( i . e . p .  s(l~, b) ~ p-  i(~; a)). 

The  proof of  Theorem 4.5: By [2], Theorem 1.2, 

• ( 1 ! 2 ! - . .  (q - 2)!) - k - l ,  

hence b(q-1)(~) is a polynomial  of the )~i - ;~j's and b(q-1)()~) = a(°)(~)+ lower 

terms in the )~i - )~j's. Also, a(°)(x) is p.h.d., hence 4.5 holds for g = q - 1, while 

4.6 implies (4.5.2) for all s. 

Proceed by induct ion on q - 1 _< g. 

By definition of "p.s" and by Theorem 1.3 of [8], b (e+l) (#) = p.  s(#; b(e)), hence 

(4.5.1) follows by induction from 4.9. 
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Finally, (4.5.3) easily follows by induction from Corollary 4.11: 

b(e+l)(#) = p .  s(#; b (e)) = p .  s(#; a (t~-q+l) ~- lower terms), 

p.  i(#;a (e-q+1)) + lower terms in #i - # j ' s  

= a (e-q+2)(p) + lower terms in #i - #j  's. | 
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